Language Models Meet Anomaly Detection for **Better Interpretability and Generalizability**

Jun Li^{1,2}, Su Hwan Kim⁴, Philip Müller¹, Lina Felsner¹, Daniel Rueckert^{1,2,4,5} Benedikt Wiestler^{1,4}, Julia A. Schnabel^{*1,2,3,6} (⊠), Cosmin I. Bercea^{*1,3} (⊠)

MICC

How?

Why UAD + LMs?

Lack of Interpretability:

Traditional UAD models create anomaly maps but do not explain the findings, leaving clinicians with a limited understanding of what the anomalies represent.

Why LMs + UAD?

Need for Generalizability:

Existing models struggle to detect unseen anomalies (open-set anomalies), which is critical for real-world applications in medical diagnostics.

Methodology									
С									

Knowledge Querying Transformer (KQ-Former):

Aligns visual and textual features, improving anomaly map interpretability and detection accuracy.

Multi-Image Visual Question Answering (VQA):

The model processes multiple types of images (original, anomaly map, and pseudo-healthy reconstruction) to answer questions and explain the detected anomalies.

Results: UAD + LMs

CQ: Please describe the condition

Positive and Negative Visualizations of Our Framework

Anomaly Maps enhance VQA performance

		Kno	wn	Unknown					
	Method	Ove	Overall		rall	Unhealthy (17%)		Healthy (83%)	
		$\mathrm{ACC}\uparrow$	$F1 \uparrow$	ACC \uparrow	$F1\uparrow$	$\mathrm{ACC}\uparrow$	$F1\uparrow$	ACC \uparrow	$F1\uparrow$
lC.	w/o Ano	85.29	85.29	84.13	87.50	69.67	80.00	98.70	95.00
0	w Ano.	88.24	88.19	89.37	89.37	82.35 ▲ 18%	82.35 3%	96.39	96.39

CQ: Is the case normal?

1 Technical University of Munich, Germany 3 Helmholtz AI & Helmholtz Center Munich, Germany 5 Imperial College London, UK

2 Munich Center for Machine Learning, Germany 4 Klinikum Rechts der Isar, Munich, Germany 6 King's College London, UK

Munich Center for Machine Learning

